DocumentCode :
1425799
Title :
Radial Function Based Kernel Design for Time-Frequency Distributions
Author :
Kodituwakku, Sandun ; Kennedy, Rodney A. ; Abhayapala, Thushara D.
Author_Institution :
Appl. Signal Process. Group, Australian Nat. Univ., Canberra, ACT, Australia
Volume :
58
Issue :
6
fYear :
2010
fDate :
6/1/2010 12:00:00 AM
Firstpage :
3395
Lastpage :
3400
Abstract :
A framework based on the n-dimensional Fourier transform of a radially symmetric function is introduced to design kernels for Cohen time-frequency distributions. Under this framework, we derive a kernel formula which generalizes and unifies Margenau-Hill, Born-Jordan, and Bessel distributions, using a realization based on a n-dimensional radial delta function. The higher order radial kernels suppress more cross-term energy compared with existing lower order kernels, which is illustrated by the time-frequency analysis of atrial fibrillation from surface electro cardiogram data.
Keywords :
Fourier transforms; signal processing; time-frequency analysis; Bessel distributions; Born-Jordan distributions; Cohen time-frequency distributions; Margenau-Hill distributions; n-dimensional Fourier transform; n-dimensional radial delta function; radial function based kernel design; surface electro cardiogram data; time-frequency analysis; Bessel distribution; Born–Jordan distribution; Cohen class; Margenau–Hill distribution; kernel design; multidimensional Fourier transform; time-frequency distributions (TFDs);
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2010.2044252
Filename :
5419964
Link To Document :
بازگشت