DocumentCode :
1425906
Title :
A Prediction Approach for Multichannel EEG Signals Modeling Using Local Wavelet SVM
Author :
Shen, Minfen ; Lin, Lanxin ; Chen, Jialiang ; Chang, Chunqi Q.
Author_Institution :
Dept. of Electron. Eng., Shantou Univ., Shantou, China
Volume :
59
Issue :
5
fYear :
2010
fDate :
5/1/2010 12:00:00 AM
Firstpage :
1485
Lastpage :
1492
Abstract :
Accurate modeling of the multichannel electroencephalogram (EEG) signal is an important issue in clinical practice. In this paper, we propose a new local spatiotemporal prediction method based on support vector machines (SVMs). Combining with the local prediction method, the sequential minimal optimization (SMO) training algorithm, and the wavelet kernel function, a local SMO-wavelet SVM (WSVM) prediction model is developed to enhance the efficiency, effectiveness, and universal approximation capability of the prediction model. Both the spatiotemporal modeling from the measured time series and the details of the nonlinear modeling procedures are discussed. Simulations and experimental results with real EEG signals show that the proposed method is suitable for real signal processing and is effective in modeling the local spatiotemporal dynamics. This method greatly increases the computational speed and more effectively captures the local information of the signal.
Keywords :
approximation theory; electroencephalography; medical signal processing; spatiotemporal phenomena; support vector machines; time series; wavelet transforms; local wavelet SVM; multichannel electroencephalogram signal; nonlinear modeling; prediction method; sequential minimal optimization training algorithm; spatiotemporal prediction method; support vector machines; time series; universal approximation; wavelet kernel function; Electroencephalogram (EEG) signal; local prediction method; support vector machine (SVM); wavelet kernel;
fLanguage :
English
Journal_Title :
Instrumentation and Measurement, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9456
Type :
jour
DOI :
10.1109/TIM.2010.2040905
Filename :
5419981
Link To Document :
بازگشت