DocumentCode :
1426461
Title :
On Semibent Boolean Functions
Author :
Carlet, Claude ; Mesnager, Sihem
Author_Institution :
Dept. of Math., Univ. of Paris VIII, St. Denis, France
Volume :
58
Issue :
5
fYear :
2012
fDate :
5/1/2012 12:00:00 AM
Firstpage :
3287
Lastpage :
3292
Abstract :
We show that any Boolean function, in even dimension, equal to the sum of a Boolean function g which is constant on each element of a spread and of a Boolean function h whose restrictions to these elements are all linear, is semibent if and only if g and h are both bent. We deduce a large number of infinite classes of semibent functions in explicit bivariate (respectively, univariate) polynomial form.
Keywords :
Boolean functions; bivariate polynomial form; infinite classes; semibent Boolean function; Boolean functions; Computer science; Correlation; Cryptography; Polynomials; Transforms; Vectors; Bent function; Boolean function; Walsh Hadamard transform; partial spread class; semibent function; three-valued almost optimal function;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2181330
Filename :
6135503
Link To Document :
بازگشت