DocumentCode :
1426551
Title :
Using compiled knowledge to guide and focus abductive diagnosis
Author :
Console, Luca ; Portinale, Luigi ; Dupré, Daniele Theseider
Author_Institution :
Dipartimento di Inf., Torino Univ., Italy
Volume :
8
Issue :
5
fYear :
1996
fDate :
10/1/1996 12:00:00 AM
Firstpage :
690
Lastpage :
706
Abstract :
Several artificial intelligence architectures and systems based on “deep” models of a domain have been proposed, in particular for the diagnostic task. These systems have several advantages over traditional knowledge based systems, but they have a main limitation in their computational complexity. One of the ways to face this problem is to rely on a knowledge compilation phase, which produces knowledge that can be used more effectively with respect to the original one. We show how a specific knowledge compilation approach can focus reasoning in abductive diagnosis, and, in particular, can improve the performances of AID, an abductive diagnosis system. The approach aims at focusing the overall diagnostic cycle in two interdependent ways: avoiding the generation of candidate solutions to be discarded a posteriori and integrating the generation of candidate solutions with discrimination among different candidates. Knowledge compilation is used off-line to produce operational (i.e., easily evaluated) conditions that embed the abductive reasoning strategy and are used in addition to the original model, with the goal of ruling out parts of the search space or focusing on parts of it. The conditions are useful to solve most cases using less time for computing the same solutions, yet preserving all the power of the model-based system for dealing with multiple faults and explaining the solutions. Experimental results showing the advantages of the approach are presented
Keywords :
computational complexity; diagnostic expert systems; diagnostic reasoning; knowledge engineering; model-based reasoning; software performance evaluation; AID; abductive diagnosis; abductive diagnosis system; abductive diagnostic reasoning; artificial intelligence architectures; candidate solutions; compiled knowledge; computational complexity; deep models; knowledge based systems; knowledge compilation phase; model-based system; multiple faults; performance; search space; time; Artificial intelligence; Computational complexity; Computer architecture; Current measurement; Fault diagnosis; Helium; Inference mechanisms; Knowledge based systems; Power system modeling; Problem-solving;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/69.542024
Filename :
542024
Link To Document :
بازگشت