DocumentCode :
1426853
Title :
Random Action of Compact Lie Groups and Minimax Estimation of a Mean Pattern
Author :
Bigot, Jérémie ; Christophe, Claire ; Gadat, Sébastien
Author_Institution :
Inst. de Math. de Toulouse, Univ. de Toulouse, Toulouse, France
Volume :
58
Issue :
6
fYear :
2012
fDate :
6/1/2012 12:00:00 AM
Firstpage :
3509
Lastpage :
3520
Abstract :
This paper considers the problem of estimating a mean pattern in the setting of Grenander´s pattern theory. Shape variability in a dataset of curves or images is modeled by the random action of elements in a compact Lie group on an infinite dimensional space. In the case of observations contaminated by an additive Gaussian white noise, it is shown that estimating a reference template in the setting of Grenanders pattern theory falls into the category of deconvolution problems over Lie groups. To obtain this result, we build an estimator of a mean pattern by using Fourier deconvolution and harmonic analysis on compact Lie groups. In an asymptotic setting where the number of observed curves or images tends to infinity, we derive upper and lower bounds for the minimax quadratic risk over Sobolev balls. This rate depends on the smoothness of the density of the random Lie group elements representing shape variability in the data, which makes a connection between estimating a mean pattern and standard deconvolution problems in nonparametric statistics.
Keywords :
AWGN; Fourier analysis; deconvolution; estimation theory; harmonic analysis; image processing; minimax techniques; Fourier deconvolution; Grenander pattern theory; Sobolev balls; additive Gaussian white noise; compact Lie group random action; deconvolution problems; harmonic analysis; image processing; infinite dimensional space; lower bounds; mean pattern estimation; minimax estimation; minimax quadratic risk; nonparametric statistics; random Lie group element density; reference template estimation; shape variability; upper bounds; Convolution; Deconvolution; Estimation; Kernel; Random variables; Shape; Upper bound; Deconvolution; Grenander´s pattern theory; Lie groups; Sobolev space; harmonic analysis; mean pattern estimation; minimax rate; random action; reference template; shape variability;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2185484
Filename :
6135793
Link To Document :
بازگشت