DocumentCode :
1428337
Title :
A six-wafer combustion system for a silicon micro gas turbine engine
Author :
Mehra, Amit ; Zhang, Xin ; Ayón, Arturo A. ; Waitz, Ian A. ; Schmidt, Martin A. ; Spadaccini, Christopher M.
Author_Institution :
Dept. of Aeronaut. & Astronaut., MIT, Cambridge, MA, USA
Volume :
9
Issue :
4
fYear :
2000
Firstpage :
517
Lastpage :
527
Abstract :
As part of a program to develop a micro gas turbine engine capable of producing 10-50 W of electrical power in a package less than one cubic centimeter in volume, we present the design, fabrication, packaging, and experimental test results for the 6-wafer combustion system for a silicon microengine. Comprising the main nonrotating functional components of the engine, the device described measures 2.1 cm/spl times/2.1 cm/spl times/0.38 cm and is largely fabricated by deep reactive ion etching through a total thickness of 3800 /spl mu/m. Complete with a set of fuel plenums, pressure ports, fuel injectors, igniters, fluidic interconnects, and compressor and turbine static airfoils, this structure is the first demonstration of the complete hot flow path of a multilevel micro gas turbine engine. The 0.195 cm/sup 3/ combustion chamber is shown to sustain a stable hydrogen flame over a range of operating mass flows and fuel-air mixture ratios and to produce exit gas temperatures in excess of 1600 K. It also serves as the first experimental demonstration of stable hydrocarbon microcombustion within the structural constraints of silicon. Combined with longevity tests at elevated temperatures for tens of hours, these results demonstrate the viability of a silicon-based combustion system for micro heat engine applications.
Keywords :
aerospace engines; combustion; elemental semiconductors; gas turbines; micromechanical devices; silicon; sputter etching; 10 to 50 W; 1600 K; Si; deep reactive ion etching; exit gas temperatures; fluidic interconnects; fuel injectors; fuel plenums; fuel-air mixture ratios; hot flow path; igniters; longevity tests; micro gas turbine engine; microcombustion; nonrotating functional components; operating mass flows; packaging; pressure ports; six-wafer combustion system; static airfoils; Combustion; Etching; Fabrication; Fuels; Heat engines; Packaging; Silicon; System testing; Thickness measurement; Turbines;
fLanguage :
English
Journal_Title :
Microelectromechanical Systems, Journal of
Publisher :
ieee
ISSN :
1057-7157
Type :
jour
DOI :
10.1109/84.896774
Filename :
896774
Link To Document :
بازگشت