DocumentCode :
1429150
Title :
Noncoherent MIMO Radar for Location and Velocity Estimation: More Antennas Means Better Performance
Author :
He, Qian ; Blum, Rick S. ; Haimovich, Alexander M.
Author_Institution :
Electr. Eng. Dept., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Volume :
58
Issue :
7
fYear :
2010
fDate :
7/1/2010 12:00:00 AM
Firstpage :
3661
Lastpage :
3680
Abstract :
This paper presents an analysis of the joint estimation of target location and velocity using a multiple-input multiple-output (MIMO) radar employing noncoherent processing for a complex Gaussian extended target. A MIMO radar with M transmit and N receive antennas is considered. To provide insight, we focus on a simplified case first, assuming orthogonal waveforms, temporally and spatially white noise-plus-clutter, and independent reflection coefficients. Under these simplifying assumptions, the maximum-likelihood (ML) estimate is analyzed, and a theorem demonstrating the asymptotic consistency, large MN , of the ML estimate is provided. Numerical investigations, given later, indicate similar behavior for some reasonable cases violating the simplifying assumptions. In these initial investigations, we study unconstrained systems, in terms of complexity and energy, where each added transmit antenna employs a fixed energy so that the total transmitted energy is allowed to increase as we increase the number of transmit antennas. Following this, we also look at constrained systems, where the total system energy and complexity are fixed. To approximate systems of fixed complexity in an abstract way, we restrict the total number of antennas employed to be fixed. Here, we show numerical examples which indicate a preference for receive antennas, similar to MIMO communications, but where systems with multiple transmit antennas yield the smallest possible mean-square error (MSE). The joint Cramér-Rao bound (CRB) is calculated and the MSE of the ML estimate is analyzed. It is shown for some specific numerical examples that the signal-to-clutter-plus-noise ratio (SCNR) threshold, indicating the SCNRs above which the MSE of the ML estimate is reasonably close to the CRB, can be lowered by increasing MN. The noncoherent MIMO radar ambiguity function (AF) is developed in two different ways and illustrated by examples. It is shown for some specif- - ic examples that the size of the product MN controls the levels of the sidelobes of the AF.
Keywords :
MIMO radar; maximum likelihood estimation; mean square error methods; receiving antennas; transmitting antennas; Cramer-Rao bound; complex Gaussian extended target; independent reflection coefficients; location estimation; maximum-likelihood estimation; mean-square error estimation; multiple-input multiple-output radar; noncoherent MIMO radar ambiguity function; orthogonal waveforms; receive antennas; signal-to-clutter-plus-noise ratio threshold; spatially white noise-plus-clutter; temporally white noise-plus-clutter; transmit antennas; velocity estimation; Ambiguity function (AF); Cramér–Rao bound (CRB); joint estimation; mean-square error (MSE); noncoherent MIMO radar;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2010.2044613
Filename :
5422709
Link To Document :
بازگشت