DocumentCode :
1429463
Title :
A neural network model of parametric nonlinear hysteretic inductors
Author :
Cincotti, Silvano ; Marchesi, Michele ; Serri, Antonino
Author_Institution :
Dipartimento di Ingegneria Elettrica ed Elettronica, Cagliari Univ., Italy
Volume :
34
Issue :
5
fYear :
1998
fDate :
9/1/1998 12:00:00 AM
Firstpage :
3040
Lastpage :
3043
Abstract :
A neural network model of nonlinear hysteretic inductors is presented. The proposed neural network model is shown to reproduce the dynamic scalar hysteretic behavior of the current-flux relationship. Moreover, the intrinsic characteristics of the neural network approach yield a model particularly suitable when dependencies on different parameters are present, e.g., influence of mobile part positions, of temperature etc. Both theoretical comparisons (e.g., Chua-Stronsmoe model and Jiles-Atherton model) and experimental measurements (e.g., variable reluctance linear motor) are considered. Results point out the numerical accuracy and computational efficiency of the proposed NN approach, that results in a general framework useful in the field of electric machines, of electronic power circuits, of control and identification
Keywords :
hysteresis; inductors; neural nets; parameter estimation; Chua-Stronsmoe model; Jiles-Atherton model; current-flux relationship; dynamic scalar hysteretic behavior; electric machines; mobile part positions; neural network model; parametric nonlinear hysteretic inductors; power circuits; variable reluctance linear motor; Circuits; Computational efficiency; Hysteresis; Inductors; Mathematical model; Neural networks; Power system modeling; Resistors; Temperature dependence; Voltage;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/20.717711
Filename :
717711
Link To Document :
بازگشت