DocumentCode :
1431382
Title :
System zeros analysis via the Moore-Penrose pseudoinverse and SVD of the first nonzero Markov parameter
Author :
Tokarzewski, J.
Author_Institution :
Inst. of Mech. Vehicles, Mil. univ. of Technol., Warsaw
Volume :
43
Issue :
9
fYear :
1998
fDate :
9/1/1998 12:00:00 AM
Firstpage :
1285
Lastpage :
1291
Abstract :
A new characterization of system zeros of an arbitrary linear system described by a state-space model S(A, B, C, D) is presented. The transmission zeros are characterized as invariant zeros of an appropriate strictly proper system with a smaller number of inputs and outputs than the original system. The approach is based on singular value decomposition (SVD) of the first nonzero Markov parameter. This result together with characterization of invariant and decoupling zeros, based on the Moore-Penrose inverse of the first nonzero Markov parameter and the Kalman canonical decomposition theorem, provided in the first part of the paper yield a complete characterization of system zeros of an arbitrary multi-input/multi-output system
Keywords :
MIMO systems; Markov processes; control system analysis; poles and zeros; singular value decomposition; state-space methods; Kalman canonical decomposition theorem; MIMO system; Markov parameter; Moore-Penrose inverse; Moore-Penrose pseudoinverse; SVD; decoupling zeros; invariant zeros; linear system; singular value decomposition; state-space model; strictly proper system; system zeros analysis; transmission zeros; Automatic control; Control system analysis; Control systems; Error correction; Filtering theory; H infinity control; Linear systems; Optimal control; Singular value decomposition; Steady-state;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/9.718619
Filename :
718619
Link To Document :
بازگشت