DocumentCode :
1431392
Title :
Lifting the Fundamental Cone and Enumerating the Pseudocodewords of a Parity-Check Code
Author :
Kositwattanarerk, Wittawat ; Matthews, Gretchen L.
Author_Institution :
Dept. of Math. Sci., Clemson Univ., Clemson, SC, USA
Volume :
57
Issue :
2
fYear :
2011
Firstpage :
898
Lastpage :
909
Abstract :
The performance of message-passing iterative decoding and linear programming decoding depends on the Tanner graph representation of the code. If the underlying graph contains cycles, then such algorithms could produce a noncodeword output. The study of pseudocodewords aims to explain this noncodeword output. We examine the structure of the pseudocodewords and show that there is a one-to-one correspondence between graph cover pseudocodewords and integer points in a lifted fundamental cone. This gives a simple proof that the generating function of the pseudocodewords for a general parity-check code is rational (a fact first proved by Li, Lu, and Wang (Lecture Notes in Computer Science, vol. 5557, 2009) via other methods). Our approach yields algorithms for producing this generating function and provides tools for studying the irreducible pseudocodewords. Specifically, Barvinok´s algorithm and the Barvinok-Woods projection algorithm are applied, and irreducible pseudocodewords are found via a Hilbert basis for the lifted fundamental cone.
Keywords :
graph theory; iterative decoding; linear programming; parity check codes; Barvinok algorithm; Barvinok-Woods projection algorithm; Hilbert basis; Tanner graph representation; iterative decoding; linear programming decoding; message passing; noncodeword output; parity check code; pseudocodeword; Fundamental cone; irreducible pseudocodewords; iterative decoding; linear programming (LP) decoding; low-density parity-check (LDPC) code; pseudocodewords;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2010.2095071
Filename :
5695120
Link To Document :
بازگشت