DocumentCode :
1433525
Title :
The Koch monopole: a small fractal antenna
Author :
Baliarda, Carles Puente ; Romeu, Jordi ; Cardama, Angel
Author_Institution :
Dept. de Teoria del Senyal i Comunicacions, Univ. Politecnica de Catalunya, Barcelona, Spain
Volume :
48
Issue :
11
fYear :
2000
fDate :
11/1/2000 12:00:00 AM
Firstpage :
1773
Lastpage :
1781
Abstract :
Fractal objects have some unique geometrical properties. One of them is the possibility to enclose in a finite area an infinitely long curve. The resulting curve is highly convoluted being nowhere differentiable. One such curve is the Koch curve. In this paper, the behavior the Koch monopole is numerically and experimentally analyzed. The results show that as the number of iterations on the small fractal Koch monopole are increased, the Q of the antenna approaches the fundamental limit for small antennas
Keywords :
Q-factor; antenna radiation patterns; current distribution; electric impedance; fractals; iterative methods; monopole antennas; Koch curve; Koch monopole; Q factor; current distribution; fractal antenna; highly convoluted curve; infinitely long curve; iterations; numerical analysis; quality factor; radiation pattern; Antenna feeds; Antenna radiation patterns; Antennas and propagation; Circuits; Fractal antennas; Frequency selective surfaces; Multifrequency antennas; Resonance; Shape; Surface fitting;
fLanguage :
English
Journal_Title :
Antennas and Propagation, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-926X
Type :
jour
DOI :
10.1109/8.900236
Filename :
900236
Link To Document :
بازگشت