DocumentCode :
1434038
Title :
Sparse Bayesian Learning of Filters for Efficient Image Expansion
Author :
Kanemura, Atsunori ; Maeda, Shin-ichi ; Ishii, Shin
Author_Institution :
Grad. Sch. of Inf., Kyoto Univ., Kyoto, Japan
Volume :
19
Issue :
6
fYear :
2010
fDate :
6/1/2010 12:00:00 AM
Firstpage :
1480
Lastpage :
1490
Abstract :
We propose a framework for expanding a given image using an interpolator that is trained in advance with training data, based on sparse Bayesian estimation for determining the optimal and compact support for efficient image expansion. Experiments on test data show that learned interpolators are compact yet superior to classical ones.
Keywords :
Bayes methods; filtering theory; image processing; interpolation; filters; image expansion; interpolator; sparse Bayesian learning; Automatic relevance determination (ARD); image expansion; image interpolation; resolution synthesis (RS); sparse Bayesian estimation; variational estimation; Algorithms; Artificial Intelligence; Bayes Theorem; Image Enhancement; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity; Signal Processing, Computer-Assisted;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/TIP.2010.2043010
Filename :
5427022
Link To Document :
بازگشت