• DocumentCode
    143531
  • Title

    A layered sparse adaptive possibilistic approach for hyperspectral image clustering

  • Author

    Xenaki, Spyridoula D. ; Koutroumbas, Konstantinos D. ; Rontogiannis, Athanasios A. ; Sykioti, Olga A.

  • Author_Institution
    IAASARS, Nat. Obs. of Athens, Athens, Greece
  • fYear
    2014
  • fDate
    13-18 July 2014
  • Firstpage
    2890
  • Lastpage
    2893
  • Abstract
    In this paper a new algorithm suitable for hyperspectral image clustering, called L-SAPCM, is proposed. The algorithm works in layers where at each layer, after suitable pre-processing, the SAPCM clustering algorithm ([1]) is applied. Preliminary results on real hyperspectral images show enhanced performance compared to other related methods.
  • Keywords
    geophysical image processing; hyperspectral imaging; image enhancement; pattern clustering; L-SAPCM; SAPCM clustering algorithm; enhanced performance; hyperspectral image clustering; layered sparse adaptive possibilistic approach; real hyperspectral images; Clustering algorithms; Hyperspectral imaging; Roads; Soil; Vectors; Vegetation; hyperspectral; layered clustering; sparsity;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International
  • Conference_Location
    Quebec City, QC
  • Type

    conf

  • DOI
    10.1109/IGARSS.2014.6947080
  • Filename
    6947080