• DocumentCode
    1435341
  • Title

    Area efficient implementations of fixed-template CNN´s

  • Author

    Anguita, Mancia ; Pelayo, Francisco J. ; Rojas, Ignacio ; Prieto, Alberto

  • Author_Institution
    Dept. de Electron. y Tecnologia de Computadores, Granada Univ., Spain
  • Volume
    45
  • Issue
    9
  • fYear
    1998
  • fDate
    9/1/1998 12:00:00 AM
  • Firstpage
    968
  • Lastpage
    973
  • Abstract
    Implementations of fixed-template Cellular Neural Networks (CNN´s) with reduced circuit complexity are presented. Considerable improvements in area without performance degradation have been obtained by: (1) using single-polarity signals that reduce the number of transistors required for signal replication and to generate the pseudo-linear output function; (2) using simple current-mode circuits to implement the output pseudo-linear function; and (3) searching for network parameter configurations that solve a particular application using the proposed circuit implementation with less hardware complexity. Experimental results for a CCD-CNN chip prototype with a density of 230 cells per millimetersquared (mm2) are also reported
  • Keywords
    CMOS analogue integrated circuits; analogue processing circuits; cellular neural nets; neural chips; CCD-CNN chip prototype; area efficient implementations; cellular neural networks; circuit complexity reduction; component connected device; current-mode circuits; fixed-template CNN; network parameter configurations; pseudo-linear output function; single-polarity signals; Cellular neural networks; Complexity theory; Current mode circuits; Degradation; Equations; Hardware; Image processing; Integrated circuit interconnections; Prototypes; Signal generators;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1057-7122
  • Type

    jour

  • DOI
    10.1109/81.721262
  • Filename
    721262