Title :
Innocent Until Proven Guilty: Reducing Robot Shaping From Polynomial to Linear Time
Author :
Bongard, Josh C.
Author_Institution :
Dept. of Comput. Sci., Univ. of Vermont, Burlington, VT, USA
Abstract :
In evolutionary algorithms, much time is spent evaluating inferior phenotypes that produce no offspring. A common heuristic to address this inefficiency is to stop evaluations early if they hold little promise of attaining high fitness. However, the form of this heuristic is typically dependent on the fitness function used, and there is a danger of prematurely stopping evaluation of a phenotype that may have recovered in the remainder of the evaluation period. Here a stopping method is introduced that gradually reduces fitness over the phenotype´s evaluation, rather than accumulating fitness. This method is independent of the fitness function used, only stops those phenotypes that are guaranteed to become inferior to the current offspring-producing phenotypes, and realizes significant time savings across several evolutionary robotics tasks. It was found that for many tasks, time complexity was reduced from polynomial to sublinear time, and time savings increased with the number of training instances used to evaluate a phenotype as well as with task difficulty.
Keywords :
evolutionary computation; polynomials; robots; evolutionary algorithms; evolutionary robotics tasks; fitness function; inferior phenotypes; linear time; offspring-producing phenotypes; polynomial time; prematurely stopping evaluation; Evolutionary computation; Joints; Manipulators; Neurons; Robot sensing systems; Early stopping; evolutionary robotics;
Journal_Title :
Evolutionary Computation, IEEE Transactions on
DOI :
10.1109/TEVC.2010.2096540