DocumentCode :
1437399
Title :
Image capture: simulation of sensor responses from hyperspectral images
Author :
Vora, Poorvi L. ; Farrell, Joyce E. ; Tietz, Jerome D. ; Brainard, David H.
Author_Institution :
Hewlett-Packard Co., Corvallis, OR, USA
Volume :
10
Issue :
2
fYear :
2001
fDate :
2/1/2001 12:00:00 AM
Firstpage :
307
Lastpage :
316
Abstract :
This paper describes the design and performance of an image capture simulator. The general model underlying the simulator assumes that the image capture device contains multiple classes of sensors with different spectral sensitivities and that each sensor responds in a known way to irradiance over most of its operating range. The input to the simulator is a set of narrow-band images of the scene taken with a custom-designed hyperspectral camera system. The parameters for the simulator are the number of sensor classes, the sensor spectral sensitivities, the noise statistics and number of quantization levels for each sensor class, the spatial arrangement of the sensors and the exposure duration. The output of the simulator is the raw image data that would have been acquired by the simulated image capture device. To test the simulator, we acquired images of the same scene both with the hyperspectral camera and with a calibrated Kodak DCS-200 digital color camera. We used the simulator to predict the DCS-200 output from the hyperspectral data. The agreement between simulated and acquired images validated the image capture response model and our simulator implementation. We believe the simulator will provide a useful tool for understanding the effect of varying the design parameters of an image capture device
Keywords :
CCD image sensors; cameras; digital simulation; image processing; noise; spectral analysis; statistical analysis; CCD; Kodak DCS-200 digital color camera; custom-designed hyperspectral camera system; design parameters; exposure duration; hyperspectral images; image capture device; image capture response model; image capture simulator; image data; narrow-band images; noise statistics; performance; quantization levels; sensor responses simulation; spectral sensitivity; Digital cameras; Hyperspectral imaging; Hyperspectral sensors; Image sensors; Layout; Narrowband; Noise level; Quantization; Statistics; Testing;
fLanguage :
English
Journal_Title :
Image Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1057-7149
Type :
jour
DOI :
10.1109/83.902295
Filename :
902295
Link To Document :
بازگشت