Title :
A generalized multibit recoding of two´s complement binary numbers and its proof with application in multiplier implementations
Author :
Sam, Homayoon ; Gupta, Arupratan
Author_Institution :
AT&T Bell Lab., Allentown, PA, USA
fDate :
8/1/1990 12:00:00 AM
Abstract :
A multibit recoding algorithm for signed two´s complement binary numbers is presented and proved. In general, a k+1-bit recoding will result in a signed-digit (SD) representation of the binary number in radix 2k, using digits -2k-1 to +2k-1 including 0. It is shown that a correct SD representation of the original number is obtained by scanning K+1-tuples (k⩾1) with one bit overlapping between adjacent groups. Recording of binary numbers has been used in computer arithmetic with 3-bit recoding being the dominant scheme. With the emergence of very high speed adders, hardware parallel multipliers using multibit recoding with k>2 are feasible, with the potential of improving both the performance and the hardware requirements. A parallel hardware multiplier based on the specific case of 5-bit recoding is proposed. Extensions beyond 5-bit recoding for multiplier design are studied for their performance and hardware requirements. Other issues relating to multiplier design, such as multiplication by a fixed or controlled coefficient, are also discussed in the light of multibit recoding
Keywords :
digital arithmetic; multiplying circuits; 5-bit recoding; computer arithmetic; controlled coefficient multiplication; fixed coefficient multiplication; hardware parallel multipliers; multibit recoding algorithm; performance; radix 2k; signed two´s complement binary numbers; signed-digit representation; very high speed adders; Digital arithmetic; Hardware; Lighting control;
Journal_Title :
Computers, IEEE Transactions on