• DocumentCode
    1439780
  • Title

    Distributed Robust Optimization for Scalable Video Multirate Multicast Over Wireless Networks

  • Author

    Li, Chenglin ; Xiong, Hongkai ; Zou, Junni ; Chen, Chang Wen

  • Author_Institution
    Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
  • Volume
    22
  • Issue
    6
  • fYear
    2012
  • fDate
    6/1/2012 12:00:00 AM
  • Firstpage
    943
  • Lastpage
    957
  • Abstract
    This paper proposes a distributed robust optimization scheme to jointly optimize overall video quality and traffic performance for scalable video multirate multicast over practical wireless networks. In order to guarantee layered utility maximization, the initial nominal joint source and network optimization is defined, where each scalable layer is tailored in an incremental order and finds jointly optimal multicast paths and associated rates with network coding. To enhance the robustness of the nominal convex optimization formulation with nonlinear constraints, we reserve partial bandwidth for backup paths disjoint from the primal paths. It considers the path-overlapping allocation of backup paths for different receivers to take advantage of network coding, and takes into account the robust multipath rate-control and bandwidth reservation problem for scalable video multicast streaming when possible link failures of primary paths exist. Specifically, an uncertainty set of the wireless medium capacity is introduced to represent the uncertain and time-varying property of parameters related to the wireless channel. The targeted uncertainty in the robust optimization problem is studied in a form of protection functions with nonlinear constraints, to analyze the tradeoff between robustness and distributedness. Using the dual decomposition and primal-dual update approach, we develop a fully decentralized algorithm with regard to communication overhead. Through extensive experimental results under critical performance factors, the proposed algorithm could converge to the optimal steady-state more quickly, and adapt the dynamic network changes in an optimal tradeoff between optimization performance and robustness than existing optimization schemes.
  • Keywords
    bandwidth allocation; convex programming; multicast communication; network coding; radio networks; telecommunication traffic; time-varying channels; video streaming; wireless channels; backup paths disjoint; bandwidth reservation problem; decentralized algorithm; distributed robust optimization; dual decomposition; layered utility maximization; multipath rate-control; network coding; network optimization; nominal convex optimization formulation; nonlinear constraints; partial bandwidth; path-overlapping allocation; primal-dual update approach; protection functions; robust optimization problem; scalable video multicast streaming; scalable video multirate multicast; time-varying property; traffic performance optimization; video quality optimization; wireless channel; wireless medium capacity; wireless network; Network coding; Optimization; Robustness; Static VAr compensators; Uncertainty; Wireless networks; Multirate multicast; network coding; rate-distortion; robust optimization; scalable video coding;
  • fLanguage
    English
  • Journal_Title
    Circuits and Systems for Video Technology, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1051-8215
  • Type

    jour

  • DOI
    10.1109/TCSVT.2012.2186740
  • Filename
    6145629