Title :
Finite-time global chaos synchronization for piecewise linear maps
Author :
Millerioux, Gilles ; Mira, Christian
Author_Institution :
Centre de Recherche en Autom. de Nancy, Ecole Superieure des Sci. et Technol. de l´´Ingenieur, Vandoeuvre Les Nancy, France
fDate :
1/1/2001 12:00:00 AM
Abstract :
In this paper, sufficient conditions of global synchronization in finite-time, which can be a minimum, are presented for the generic class of piecewise linear maps. The conditions of synchronization are based upon general results of the robust control theory, the observability theory, and the specificity of the chaotic motion generated by the map. The robust control theory results enable global synchronization with disturbances cancellation. Observability and assignment of eigenvalues ensure finite-time synchronization. A systematic methodology for designing a global finite-time synchronization derived from those conditions is presented. From a practical point of view, this only requires classical numerical solvers. Finite-time global synchronization can be of interest for applications such as digital communications
Keywords :
chaos; digital communication; eigenvalues and eigenfunctions; matrix algebra; observability; piecewise linear techniques; robust control; synchronisation; telecommunication security; chaotic motion; digital communications; disturbances cancellation; eigenvalues; finite-time global chaos synchronization; numerical solvers; observability theory; piecewise linear maps; robust control theory; Chaos; Chaotic communication; Circuits; Design methodology; Digital communication; Eigenvalues and eigenfunctions; Observability; Piecewise linear techniques; Robust control; Sufficient conditions;
Journal_Title :
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on