Title :
Performance analysis of an adaptive algorithm for tracking dominant subspaces
Author :
Delmas, Jean Pierre ; Cardoso, Jean François
Author_Institution :
Inst. Nat. des Telecommun., Evry, France
fDate :
11/1/1998 12:00:00 AM
Abstract :
This paper provides a performance analysis of a least mean square (LMS) dominant invariant subspace algorithm. Based on an unconstrained minimization problem, this algorithm is a stochastic gradient algorithm driving the columns of a matrix W to an orthonormal basis of a dominant invariant subspace of a correlation matrix. We consider the stochastic algorithm governing the evolution of WWH to the projection matrix onto this dominant invariant subspace and study its asymptotic distribution. A closed-form expression of its asymptotic covariance is given in the case of independent observations and is further analyzed to provide some insights into the behavior of this LMS type algorithm. In particular, it is shown that even though the algorithm does not constrain W to have orthonormal columns, there is deviation from orthonormality of the first order. We also give a closed-form expression of the asymptotic covariance of the DOAs estimated by the MUSIC algorithm applied to the adaptive estimate of the projector. It is found that the asymptotic distributions have a structure that is very similar to those describing batch estimation techniques because both algorithms are obtained from the minimization of the same criterion. Finally, the accuracy of the asymptotic analysis is checked by numerical simulations and is found to be valid not only for a “small” step size but in a very large domain
Keywords :
adaptive estimation; adaptive signal processing; array signal processing; correlation methods; direction-of-arrival estimation; least mean squares methods; matrix algebra; minimisation; stochastic processes; tracking; DOA; LMS dominant invariant subspace algorithm; MUSIC algorithm; accuracy; adaptive algorithm; adaptive estimate; asymptotic analysis; asymptotic covariance; asymptotic distribution; batch estimation techniques; closed-form expression; correlation matrix; dominant subspaces tracking; least mean square; minimization; numerical simulations; performance analysis; projection matrix; small step size; stochastic gradient algorithm; unconstrained minimization problem; Adaptive algorithm; Algorithm design and analysis; Closed-form solution; Covariance matrix; Direction of arrival estimation; Least squares approximation; Minimization methods; Multiple signal classification; Performance analysis; Stochastic processes;
Journal_Title :
Signal Processing, IEEE Transactions on