Title :
Visualization of High-Dimensional Point Clouds Using Their Density Distribution´s Topology
Author :
Oesterling, Patrick ; Heine, Christian ; Jänicke, Heike ; Scheuermann, Gerik ; Heyer, Gerhard
Author_Institution :
Inst. fur Inf., Univ. Leipzig, Leipzig, Germany
Abstract :
We present a novel method to visualize multidimensional point clouds. While conventional visualization techniques, like scatterplot matrices or parallel coordinates, have issues with either overplotting of entities or handling many dimensions, we abstract the data using topological methods before presenting it. We assume the input points to be samples of a random variable with a high-dimensional probability distribution which we approximate using kernel density estimates on a suitably reconstructed mesh. From the resulting scalar field we extract the join tree and present it as a topological landscape, a visualization metaphor that utilizes the human capability of understanding natural terrains. In this landscape, dense clusters of points show up as hills. The nesting of hills indicates the nesting of clusters. We augment the landscape with the data points to allow selection and inspection of single points and point sets. We also present optimizations to make our algorithm applicable to large data sets and to allow interactive adaption of our visualization to the kernel window width used in the density estimation.
Keywords :
approximation theory; cloud computing; data visualisation; matrix algebra; optimisation; statistical distributions; trees (mathematics); data abstraction; density distribution topology; high dimensional probability distribution; high-dimensional point clouds visualization technique; interactive adaption; kernel density estimation; kernel window width; mesh reconstruction; multidimensional point clouds; natural terrain; optimization; parallel coordinates; scalar field; scatterplot matrices; topological landscape; topological method; visualization metaphor; Approximation methods; Data visualization; Density functional theory; Kernel; Piecewise linear approximation; Runtime; Topology; Clustering; graphs; pattern analysis; point clouds; topology.;
Journal_Title :
Visualization and Computer Graphics, IEEE Transactions on
DOI :
10.1109/TVCG.2011.27