DocumentCode :
1444024
Title :
Prediction Intervals to Account for Uncertainties in Travel Time Prediction
Author :
Khosravi, Abbas ; Mazloumi, Ehsan ; Nahavandi, Saeid ; Creighton, Doug ; van Lint, J.W.C.
Author_Institution :
Centre for Intell. Syst. Res., Deakin Univ., Geelong, VIC, Australia
Volume :
12
Issue :
2
fYear :
2011
fDate :
6/1/2011 12:00:00 AM
Firstpage :
537
Lastpage :
547
Abstract :
The accurate prediction of travel times is desirable but frequently prone to error. This is mainly attributable to both the underlying traffic processes and the data that are used to infer travel time. A more meaningful and pragmatic approach is to view travel time prediction as a probabilistic inference and to construct prediction intervals (PIs), which cover the range of probable travel times travelers may encounter. This paper introduces the delta and Bayesian techniques for the construction of PIs. Quantitative measures are developed and applied for a comprehensive assessment of the constructed PIs. These measures simultaneously address two important aspects of PIs: 1) coverage probability and 2) length. The Bayesian and delta methods are used to construct PIs for the neural network (NN) point forecasts of bus and freeway travel time data sets. The obtained results indicate that the delta technique outperforms the Bayesian technique in terms of narrowness of PIs with satisfactory coverage probability. In contrast, PIs constructed using the Bayesian technique are more robust against the NN structure and exhibit excellent coverage probability.
Keywords :
Bayes methods; inference mechanisms; neural nets; probability; transportation; Bayesian techniques; bus travel time data sets; coverage probability; delta techniques; freeway travel time data sets; neural network; prediction intervals; probabilistic inference; traffic processes; travel time prediction; Accidents; Artificial neural networks; Bayesian methods; Timing; Traffic control; Training; Uncertainty; Bayesian inference; delta method; neural networks (NNs); prediction intervals (PIs);
fLanguage :
English
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
1524-9050
Type :
jour
DOI :
10.1109/TITS.2011.2106209
Filename :
5709983
Link To Document :
بازگشت