Title :
On the Capacity of Intensity-Modulated Direct-Detection Systems and the Information Rate of ACO-OFDM for Indoor Optical Wireless Applications
Author :
Li, Xia ; Vucic, Jelena ; Jungnickel, Volker ; Armstrong, Jean
Author_Institution :
Dept. of Electr. & Comput. Syst. Eng., Monash Univ., Clayton, VIC, Australia
fDate :
3/1/2012 12:00:00 AM
Abstract :
In this paper we derive information theoretic results for asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) in an intensity modulated direct detection (IM/DD) optical communication system subject to a range of constraints. ACO-OFDM is a form of OFDM designed for IM/DD systems. It is an effective solution to intersymbol interference (ISI) caused by a dispersive channel and also requires less optical power than conventional optical modulation formats. Although the classical Shannon capacity formula cannot be applied directly to an IM/DD system, we show that when ACO-OFDM is used in an IM/DD system, it can be adapted to calculate the information rate of the data-carrying odd frequency subcarriers. As a result conventional water filling techniques can be used for a frequency selective channel. These results are applied to indoor wireless systems using realistic parameters for the transmitter, receiver and channel. The maximum rate at which data can be transmitted depends on the channel, the electrical bandwidth and the transmitted optical power. Even when there is no line of sight (LOS) path, when the electrical bandwidth is limited to 50 MHz and the average optical power is limited to 0.4 W, data rates of approximately 80 Mbit/s can theoretically be achieved.
Keywords :
OFDM modulation; indoor radio; information theory; intersymbol interference; optical communication; ACO-OFDM; asymmetrically clipped optical orthogonal frequency division multiplexing; conventional water filling techniques; frequency selective channel; indoor optical wireless applications; information rate; information theoretic results; intensity-modulated direct-detection systems; intersymbol interference; optical communication system; Frequency modulation; Information rates; OFDM; Optical modulation; Optical receivers; Optical transmitters; Wireless communication; ACO-OFDM; Channel capacity; OFDM; information rate; intensity modulated direct detection; optical wireless;
Journal_Title :
Communications, IEEE Transactions on
DOI :
10.1109/TCOMM.2012.020612.090300