DocumentCode :
1446646
Title :
Optimization of Resource Provisioning Cost in Cloud Computing
Author :
Chaisiri, Sivadon ; Lee, Bu-Sung ; Niyato, Dusit
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ. (NTU), Singapore, Singapore
Volume :
5
Issue :
2
fYear :
2012
Firstpage :
164
Lastpage :
177
Abstract :
In cloud computing, cloud providers can offer cloud consumers two provisioning plans for computing resources, namely reservation and on-demand plans. In general, cost of utilizing computing resources provisioned by reservation plan is cheaper than that provisioned by on-demand plan, since cloud consumer has to pay to provider in advance. With the reservation plan, the consumer can reduce the total resource provisioning cost. However, the best advance reservation of resources is difficult to be achieved due to uncertainty of consumer´s future demand and providers´ resource prices. To address this problem, an optimal cloud resource provisioning (OCRP) algorithm is proposed by formulating a stochastic programming model. The OCRP algorithm can provision computing resources for being used in multiple provisioning stages as well as a long-term plan, e.g., four stages in a quarter plan and twelve stages in a yearly plan. The demand and price uncertainty is considered in OCRP. In this paper, different approaches to obtain the solution of the OCRP algorithm are considered including deterministic equivalent formulation, sample-average approximation, and Benders decomposition. Numerical studies are extensively performed in which the results clearly show that with the OCRP algorithm, cloud consumer can successfully minimize total cost of resource provisioning in cloud computing environments.
Keywords :
cloud computing; pricing; stochastic programming; Benders decomposition; OCRP algorithm; cloud computing; computing resource utilization cost; consumer future demand uncertainty; deterministic equivalent formulation; on-demand plans; optimal cloud resource provisioning algorithm; provider resource price uncertainty; reservation plan; resource provisioning cost optimization; sample-average approximation; stochastic programming model; Algorithm design and analysis; Cloud computing; Computational modeling; Programming; Stochastic processes; Uncertainty; Virtual machining; Cloud computing; resource provisioning; stochastic programming.; virtual machine placement; virtualization;
fLanguage :
English
Journal_Title :
Services Computing, IEEE Transactions on
Publisher :
ieee
ISSN :
1939-1374
Type :
jour
DOI :
10.1109/TSC.2011.7
Filename :
5710870
Link To Document :
بازگشت