DocumentCode :
1448087
Title :
Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery
Author :
Dobigeon, Nicolas ; Moussaoui, Saïd ; Coulon, Martial ; Tourneret, Jean-Yves ; Hero, Alfred O.
Author_Institution :
Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, USA
Volume :
57
Issue :
11
fYear :
2009
Firstpage :
4355
Lastpage :
4368
Abstract :
This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the posterior distribution of abundances and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior distributions for these parameters, accounts for nonnegativity and full-additivity constraints, and exploits the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates samples distributed according to the posterior distribution and estimates the unknown parameters using these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations conducted on synthetic and real AVIRIS images.
Keywords :
Bayes methods; image sampling; Bayesian endmember extraction; Gibbs sampler; hierarchical Bayesian model; hyperspectral imagery; linear mixing model; linear unmixing; posterior distribution; Bayesian inference; MCMC methods; endmember extraction; hyperspectral imagery; linear spectral unmixing;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2009.2025797
Filename :
5256272
Link To Document :
بازگشت