DocumentCode :
1448537
Title :
Whole-Book Recognition
Author :
Xiu, Pingping ; Baird, Henry S.
Author_Institution :
Microsoft Advertising R&D, Redmond, WA, USA
Volume :
34
Issue :
12
fYear :
2012
Firstpage :
2467
Lastpage :
2480
Abstract :
Whole-book recognition is a document image analysis strategy that operates on the complete set of a book´s page images using automatic adaptation to improve accuracy. We describe an algorithm which expects to be initialized with approximate iconic and linguistic models-derived from (generally errorful) OCR results and (generally imperfect) dictionaries-and then, guided entirely by evidence internal to the test set, corrects the models which, in turn, yields higher recognition accuracy. The iconic model describes image formation and determines the behavior of a character-image classifier, and the linguistic model describes word-occurrence probabilities. Our algorithm detects “disagreements” between these two models by measuring cross entropy between 1) the posterior probability distribution of character classes (the recognition results resulting from image classification alone) and 2) the posterior probability distribution of word classes (the recognition results from image classification combined with linguistic constraints). We show how disagreements can identify candidates for model corrections at both the character and word levels. Some model corrections will reduce the error rate over the whole book, and these can be identified by comparing model disagreements, summed across the whole book, before and after the correction is applied. Experiments on passages up to 180 pages long show that when a candidate model adaptation reduces whole-book disagreement, it is also likely to correct recognition errors. Also, the longer the passage operated on by the algorithm, the more reliable this adaptation policy becomes, and the lower the error rate achieved. The best results occur when both the iconic and linguistic models mutually correct one another. We have observed recognition error rates driven down by nearly an order of magnitude fully automatically without supervision (or indeed without any user intervention or interaction). Improvement is nearly mo- otonic, and asymptotic accuracy is stable, even over long runs. If implemented naively, the algorithm runs in time quadratic in the length of the book, but random subsampling and caching techniques speed it up by two orders of magnitude with negligible loss of accuracy. Whole-book recognition has potential applications in digital libraries as a safe unsupervised anytime algorithm.
Keywords :
cache storage; digital libraries; document image processing; image classification; image sampling; optical character recognition; probability; OCR results; adaptation policy; approximate iconic models; automatic adaptation; caching techniques; character-image classifier; digital libraries; document image analysis strategy; image formation; linguistic models; posterior probability distribution; random subsampling; recognition accuracy; unsupervised anytime algorithm; whole-book disagreement; whole-book recognition; word-occurrence probabilities; Adaptation models; Character recognition; Computational modeling; Error analysis; Image recognition; Optical character recognition software; Pragmatics; Whole-book recognition; adaptive OCR; adaptive classification; adaptive machine learning; anytime algorithm; book recognition; cross entropy; document image recognition; isogeny; model adaptation; style consistency;
fLanguage :
English
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publisher :
ieee
ISSN :
0162-8828
Type :
jour
DOI :
10.1109/TPAMI.2012.50
Filename :
6152127
Link To Document :
بازگشت