Title :
An Algorithm for Intelligibility Prediction of Time–Frequency Weighted Noisy Speech
Author :
Taal, Cees H. ; Hendriks, Richard C. ; Heusdens, Richard ; Jensen, Jesper
Author_Institution :
Signal Inf. & Process. Lab., Delft Univ. of Technol., Delft, Netherlands
Abstract :
In the development process of noise-reduction algorithms, an objective machine-driven intelligibility measure which shows high correlation with speech intelligibility is of great interest. Besides reducing time and costs compared to real listening experiments, an objective intelligibility measure could also help provide answers on how to improve the intelligibility of noisy unprocessed speech. In this paper, a short-time objective intelligibility measure (STOI) is presented, which shows high correlation with the intelligibility of noisy and time-frequency weighted noisy speech (e.g., resulting from noise reduction) of three different listening experiments. In general, STOI showed better correlation with speech intelligibility compared to five other reference objective intelligibility models. In contrast to other conventional intelligibility models which tend to rely on global statistics across entire sentences, STOI is based on shorter time segments (386 ms). Experiments indeed show that it is beneficial to take segment lengths of this order into account. In addition, a free Matlab implementation is provided.
Keywords :
speech enhancement; speech intelligibility; intelligibility prediction; noise-reduction algorithm; noisy unprocessed speech; objective intelligibility model; objective machine-driven intelligibility measure; short-time objective intelligibility measure; speech intelligibility; time-frequency weighted noisy speech; Correlation; Noise measurement; Signal to noise ratio; Speech; Speech processing; Time frequency analysis; Noise reduction; objective measure; speech enhancement; speech intelligibility prediction;
Journal_Title :
Audio, Speech, and Language Processing, IEEE Transactions on
DOI :
10.1109/TASL.2011.2114881