Title :
Hartley, cosine and sine fractional transforms over Finite Fields
Author :
Lima, Paulo H. E. S. ; Campello de Souza, Ricardo M. ; Lima, Juliano B.
Author_Institution :
Dept. of Electron. & Syst., Fed. Univ. of Pernambuco, Recife, Brazil
Abstract :
We introduce finite field versions of fractional Hartley, sine and cosine types 1 and 4 transforms using a matrix function approach. The proposed definitions employ a finite field extension of matrix functions, which does not require the construction of an eigenvector set of the corresponding transform. We also present a relationship between the Fourier and the Hartley fractional matrices and make a preliminary discussion concerning application scenarios for the developed theory.
Keywords :
Fourier transforms; Hartley transforms; matrix algebra; Fourier transforms; finite fields; fractional Hartley transforms; fractional cosine transforms; matrix function; sine fractional transforms; Eigenvalues and eigenfunctions; Fourier transforms; Polynomials; Signal processing; Vectors; Watermarking; Finite fields; Fractional transform; Hartley; cosine; sine;
Conference_Titel :
Telecommunications Symposium (ITS), 2014 International
Conference_Location :
Sao Paulo
DOI :
10.1109/ITS.2014.6948004