DocumentCode :
1451900
Title :
Minimax Robust Quickest Change Detection
Author :
Unnikrishnan, Jayakrishnan ; Veeravalli, Venugopal V. ; Meyn, Sean P.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois at Ur bana-Champaign, Urbana, IL, USA
Volume :
57
Issue :
3
fYear :
2011
fDate :
3/1/2011 12:00:00 AM
Firstpage :
1604
Lastpage :
1614
Abstract :
The popular criteria of optimality for quickest change detection procedures are the Lorden criterion, the Pollak criterion, and the Bayesian criterion. In this paper, a robust version of these quickest change detection problems is considered when the pre-change and post-change distributions are not known exactly but belong to known uncertainty classes of distributions. For uncertainty classes that satisfy a specific condition, it is shown that one can identify least favorable distributions (LFDs) from the uncertainty classes, such that the detection rule designed for the LFDs is optimal for the robust problem in a minimax sense. The condition is similar to that required for the identification of LFDs for the robust hypothesis testing problem originally studied by Huber. An upper bound on the delay incurred by the robust test is also obtained in the asymptotic setting under the Lorden criterion of optimality. This bound quantifies the delay penalty incurred to guarantee robustness. When the LFDs can be identified, the proposed test is easier to implement than the CUSUM test based on the Generalized Likelihood Ratio (GLR) statistic which is a popular approach for such robust change detection problems. The proposed test is also shown to give better performance than the GLR test in simulations for some parameter values.
Keywords :
Bayes methods; maximum likelihood detection; minimax techniques; Bayesian criterion; CUSUM test; Lorden criterion; Pollak criterion; generalized likelihood ratio statistics; least favorable distributions; minimax; optimality; quickest change detection; Bayesian methods; Delay; Joints; Random variables; Robustness; Uncertainty; Upper bound; CUSUM test; Shiryaev test; least favorable distributions; minimax robustness; quickest change detection;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2011.2104993
Filename :
5714277
Link To Document :
بازگشت