• DocumentCode
    1451900
  • Title

    Minimax Robust Quickest Change Detection

  • Author

    Unnikrishnan, Jayakrishnan ; Veeravalli, Venugopal V. ; Meyn, Sean P.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Illinois at Ur bana-Champaign, Urbana, IL, USA
  • Volume
    57
  • Issue
    3
  • fYear
    2011
  • fDate
    3/1/2011 12:00:00 AM
  • Firstpage
    1604
  • Lastpage
    1614
  • Abstract
    The popular criteria of optimality for quickest change detection procedures are the Lorden criterion, the Pollak criterion, and the Bayesian criterion. In this paper, a robust version of these quickest change detection problems is considered when the pre-change and post-change distributions are not known exactly but belong to known uncertainty classes of distributions. For uncertainty classes that satisfy a specific condition, it is shown that one can identify least favorable distributions (LFDs) from the uncertainty classes, such that the detection rule designed for the LFDs is optimal for the robust problem in a minimax sense. The condition is similar to that required for the identification of LFDs for the robust hypothesis testing problem originally studied by Huber. An upper bound on the delay incurred by the robust test is also obtained in the asymptotic setting under the Lorden criterion of optimality. This bound quantifies the delay penalty incurred to guarantee robustness. When the LFDs can be identified, the proposed test is easier to implement than the CUSUM test based on the Generalized Likelihood Ratio (GLR) statistic which is a popular approach for such robust change detection problems. The proposed test is also shown to give better performance than the GLR test in simulations for some parameter values.
  • Keywords
    Bayes methods; maximum likelihood detection; minimax techniques; Bayesian criterion; CUSUM test; Lorden criterion; Pollak criterion; generalized likelihood ratio statistics; least favorable distributions; minimax; optimality; quickest change detection; Bayesian methods; Delay; Joints; Random variables; Robustness; Uncertainty; Upper bound; CUSUM test; Shiryaev test; least favorable distributions; minimax robustness; quickest change detection;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2011.2104993
  • Filename
    5714277