Title :
Compactly Supported Basis Functions as Support Vector Kernels for Classification
Author :
Wittek, Peter ; Tan, Chew Lim
Author_Institution :
Swedish Sch. of Libr. & Inf. Sci., Univ. of Boras, Boras, Sweden
Abstract :
Wavelet kernels have been introduced for both support vector regression and classification. Most of these wavelet kernels do not use the inner product of the embedding space, but use wavelets in a similar fashion to radial basis function kernels. Wavelet analysis is typically carried out on data with a temporal or spatial relation between consecutive data points. We argue that it is possible to order the features of a general data set so that consecutive features are statistically related to each other, thus enabling us to interpret the vector representation of an object as a series of equally or randomly spaced observations of a hypothetical continuous signal. By approximating the signal with compactly supported basis functions and employing the inner product of the embedding L2 space, we gain a new family of wavelet kernels. Empirical results show a clear advantage in favor of these kernels.
Keywords :
pattern classification; regression analysis; support vector machines; wavelet transforms; compactly supported basis function; radial basis function kernel; support vector classification; support vector kernel; support vector regression; wavelet analysis; wavelet kernel; Equations; Kernel; Mathematical model; Optics; Support vector machines; Vectors; Wavelet analysis; Wavelet kernels; feature correlation; feature engineering; semantic kernels.;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2011.28