DocumentCode :
1452600
Title :
Direct Torque and Indirect Flux Control of Brushless DC Motor
Author :
Ozturk, Salih Baris ; Toliyat, Hamid A.
Author_Institution :
Fac. of Eng. & Archit., Okan Univ., Istanbul, Turkey
Volume :
16
Issue :
2
fYear :
2011
fDate :
4/1/2011 12:00:00 AM
Firstpage :
351
Lastpage :
360
Abstract :
In this paper, the position-sensorless direct torque and indirect flux control of brushless dc (BLDC) motor with nonsinusoidal back electromotive force (EMF) has been extensively investigated. In the literature, several methods have been proposed for BLDC motor drives to obtain optimum current and torque control with minimum torque pulsations. Most methods are complicated and do not consider the stator flux linkage control, therefore, possible high-speed operations are not feasible. In this study, a novel and simple approach to achieve a low-frequency torque ripple-free direct torque control (DTC) with maximum efficiency based on dq reference frame is presented. The proposed sensorless method closely resembles the conventional DTC scheme used for sinusoidal ac motors such that it controls the torque directly and stator flux amplitude indirectly using d-axis current. This method does not require pulsewidth modulation and proportional plus integral regulators and also permits the regulation of varying signals. Furthermore, to eliminate the low-frequency torque oscillations, two actual and easily available line-to-line back EMF constants ( kba and kca) according to electrical rotor position are obtained offline and converted to the dq frame equivalents using the new line-to-line park transformation. Then, they are set up in the look-up table for torque estimation. The validity and practical applications of the proposed sensorless three-phase conduction DTC of BLDC motor drive scheme are verified through simulations and experimental results.
Keywords :
DC motor drives; brushless DC motors; electric potential; magnetic flux; position control; rotors; sensorless machine control; stators; torque control; BLDC motor; BLDC motor drive; brushless DC motor; electrical rotor position; indirect flux control; line-to-line back EMF; low-frequency torque ripple-free direct torque control; nonsinusoidal back electromotive force; position-sensorless direct torque control; sensorless three-phase conduction DTC; stator flux linkage control; torque pulsation; Brushless dc (BLDC) motor; direct torque control (DTC); fast torque response; low-frequency torque ripples; nonsinusoidal back electromotive force (EMF); position-sensorless control; stator flux control; torque pulsation;
fLanguage :
English
Journal_Title :
Mechatronics, IEEE/ASME Transactions on
Publisher :
ieee
ISSN :
1083-4435
Type :
jour
DOI :
10.1109/TMECH.2010.2043742
Filename :
5438764
Link To Document :
بازگشت