Title :
Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation
Author :
Chung, Sae-Young ; Richardson, Thomas J. ; Urbanke, Rüdiger L.
Author_Institution :
Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA
fDate :
2/1/2001 12:00:00 AM
Abstract :
Density evolution is an algorithm for computing the capacity of low-density parity-check (LDPC) codes under message-passing decoding. For memoryless binary-input continuous-output additive white Gaussian noise (AWGN) channels and sum-product decoders, we use a Gaussian approximation for message densities under density evolution to simplify the analysis of the decoding algorithm. We convert the infinite-dimensional problem of iteratively calculating message densities, which is needed to find the exact threshold, to a one-dimensional problem of updating the means of the Gaussian densities. This simplification not only allows us to calculate the threshold quickly and to understand the behavior of the decoder better, but also makes it easier to design good irregular LDPC codes for AWGN channels. For various regular LDPC codes we have examined, thresholds can be estimated within 0.1 dB of the exact value. For rates between 0.5 and 0.9, codes designed using the Gaussian approximation perform within 0.02 dB of the best performing codes found so far by using density evolution when the maximum variable degree is 10. We show that by using the Gaussian approximation, we can visualize the sum-product decoding algorithm. We also show that the optimization of degree distributions can be understood and done graphically using the visualization
Keywords :
AWGN channels; approximation theory; decoding; error detection codes; evolutionary computation; memoryless systems; optimisation; AWGN channels; Gaussian approximation; Gaussian densities; additive white Gaussian noise channels; code rates; degree distributions; density evolution algorithm; infinite-dimensional problem; irregular LDPC codes; low-density parity-check codes; maximum variable degree; memoryless binary-input continuous-output channels; message-passing decoding; optimization; regular LDPC codes; sum-product decoders; sum-product decoding algorithm; thresholds; visualization; AWGN channels; Additive white noise; Algorithm design and analysis; Approximation algorithms; Gaussian approximation; Iterative algorithms; Iterative decoding; Noise level; Parity check codes; Visualization;
Journal_Title :
Information Theory, IEEE Transactions on