Title :
Zigzag codes and concatenated zigzag codes
Author :
Ping, Li ; Huang, Xiaoling ; Phamdo, Nam
Author_Institution :
Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China
fDate :
2/1/2001 12:00:00 AM
Abstract :
This paper introduces a family of error-correcting codes called zigzag codes. A zigzag code is described by a highly structured zigzag graph. Due to the structural properties of the graph, very low-complexity soft-in/soft-out decoding rules can be implemented. We present a decoding rule, based on the Max-Log-APP (MLA) formulation, which requires a total of only 20 addition-equivalent operations per information bit, per iteration. Simulation of a rate-1/2 concatenated zigzag code with four constituent encoders with interleaver length 65 536, yields a bit error rate (BER) of 10-5 at 0.9 dB and 1.3 dB away from the Shannon limit by optimal (APP) and low-cost suboptimal (MLA) decoders, respectively. A union bound analysis of the bit error probability of the zigzag code is presented. It is shown that the union bounds for these codes can be generated very efficiently. It is also illustrated that, for a fixed interleaver size, the concatenated code has increased code potential as the number of constituent encoders increases. Finally, the analysis shows that zigzag codes with four or more constituent encoders have lower error floors than comparable turbo codes with two constituent encoders
Keywords :
concatenated codes; error correction codes; error statistics; graph theory; interleaved codes; iterative decoding; turbo codes; BER; Max-Log-APP formulation; addition-equivalent operations; bit error probability; bit error rate; concatenated code; constituent encoders; error-correcting codes; highly structured zigzag graph; interleaver length; iterative decoding; low-cost suboptimal decoders; optimal decoders; rate-1/2 concatenated zigzag code; turbo codes; union bound analysis; very low-complexity soft-in/soft-out decoding rules; zigzag codes; AWGN; Additive white noise; Bit error rate; Concatenated codes; Costs; Error correction codes; Error probability; Information theory; Iterative decoding; Turbo codes;
Journal_Title :
Information Theory, IEEE Transactions on