DocumentCode :
1454312
Title :
Time-Frequency Analysis of EEG Asymmetry Using Bivariate Empirical Mode Decomposition
Author :
Park, Cheolsoo ; Looney, David ; Kidmose, Preben ; Ungstrup, Michael ; Mandic, Danilo P.
Author_Institution :
Dept. of Electr. & Electron. Eng., Imperial Coll. London, London, UK
Volume :
19
Issue :
4
fYear :
2011
Firstpage :
366
Lastpage :
373
Abstract :
A novel method is introduced to determine asymmetry, the lateralization of brain activity, using extension of the algorithm empirical mode decomposition (EMD). The localized and adaptive nature of EMD make it highly suitable for estimating amplitude information across frequency for nonlinear and nonstationary data. Analysis illustrates how bivariate extension of EMD (BEMD) facilitates enhanced spectrum estimation for multichannel recordings that contain similar signal components, a realistic assumption in electroencephalography (EEG). It is shown how this property can be used to obtain a more accurate estimate of the marginalized spectrum, critical for the localized calculation of amplitude asymmetry in frequency. Simulations on synthetic data sets and feature estimation for a brain-computer interface (BCI) application are used to validate the proposed asymmetry estimation methodology.
Keywords :
brain-computer interfaces; electroencephalography; feature extraction; medical signal processing; time-frequency analysis; EEG asymmetry; amplitude asymmetry; amplitude information; asymmetry estimation; bivariate empirical mode decomposition; bivariate extension; brain activity lateralization; brain-computer interface application; electroencephalography; enhanced spectrum estimation; feature estimation; multichannel recording; signal component; synthetic data set; time-frequency analysis; Electroencephalography; Estimation; Frequency estimation; Frequency modulation; Signal to noise ratio; Time frequency analysis; Asymmetry ratio; bivariate empirical mode decomposition (BEMD); cognitive task; electroencephalography (EEG); empirical mode decomposition (EMD); Algorithms; Brain; Cognition; Computer Simulation; Data Interpretation, Statistical; Electroencephalography; Functional Laterality; Humans; Imagination; Nonlinear Dynamics; Psychomotor Performance; Rotation; Signal-To-Noise Ratio; User-Computer Interface;
fLanguage :
English
Journal_Title :
Neural Systems and Rehabilitation Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1534-4320
Type :
jour
DOI :
10.1109/TNSRE.2011.2116805
Filename :
5716679
Link To Document :
بازگشت