DocumentCode :
1455771
Title :
Comparison of statistical enhancement methods for Monte Carlo semiconductor simulation
Author :
Wordelman, Carl J. ; Kwan, Thomas J.T. ; Snell, Charles M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA
Volume :
17
Issue :
12
fYear :
1998
fDate :
12/1/1998 12:00:00 AM
Firstpage :
1230
Lastpage :
1235
Abstract :
Three methods of variable-weight statistical enhancement for Monte Carlo semiconductor device simulation are compared. The steady-state statistical errors and figures of merit for implementations of the multicomb, cloning-rouletting, and splitting-gathering enhancement methods are obtained for bulk silicon simulations. The results indicate that all methods enhance the high-energy distribution tail with comparable accuracy, but that the splitting-gathering method achieves a lower error at low energies by automatically preserving a peak in the bin populations at the peak of the particle energy distribution
Keywords :
Monte Carlo methods; electronic engineering computing; semiconductor device models; statistical analysis; Monte Carlo simulation; bin populations; bulk silicon simulations; cloning-rouletting enhancement methods; figures of merit; high-energy distribution tail; particle energy distribution; semiconductor device simulation; splitting-gathering enhancement methods; steady-state statistical errors; variable-weight statistical enhancement; Cloning; Computational modeling; Hot carrier effects; Hot carriers; Laboratories; Monte Carlo methods; Probability distribution; Semiconductor devices; Silicon; Steady-state;
fLanguage :
English
Journal_Title :
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Publisher :
ieee
ISSN :
0278-0070
Type :
jour
DOI :
10.1109/43.736562
Filename :
736562
Link To Document :
بازگشت