DocumentCode :
1457333
Title :
New Bounds and Optimal Binary Signature Sets - Part II: Aperiodic Total Squared Correlation
Author :
Ganapathy, Harish ; Pados, Dimitris A. ; Karystinos, George N.
Author_Institution :
Dept. of Electr. Eng., State Univ. of New York at Buffalo, Buffalo, NY, USA
Volume :
59
Issue :
5
fYear :
2011
fDate :
5/1/2011 12:00:00 AM
Firstpage :
1411
Lastpage :
1420
Abstract :
We derive new bounds on the aperiodic total squared correlation (ATSC) of binary antipodal signature sets for any number of signatures K and any signature length L. We then present optimal designs that achieve the new bounds for several (K,L) cases. As interesting -arguably- side results, we show that individual maximal merit factor sequences (for example Barker sequences) are single-user ATSC-optimal, while neither the familiar Gold nor the Kasami set designs are ATSC-optimal in general. The ATSC-optimal signature set designs provided in this work are in this sense better suited for asynchronous and/or multipath code-division multiplexing applications.
Keywords :
code division multiple access; ATSC-optimal; Kasami set design; aperiodic total squared correlation; binary antipodal signature set; maximal merit factor sequence; multipath code division multiplexing application; optimal binary signature set; optimal design; Code division multiplexing; Correlation; Delay; Electrical engineering; MIMO; Multiaccess communication; Aperiodic correlation; Barker sequences; Gold sequences; Karystinos-Pados bounds; Kasami sequences; Welch bound; aperiodic complementary sequences; code-division multiple access (CDMA); cyclic correlation; maximal merit factor; periodic total squared correlation; total squared correlation;
fLanguage :
English
Journal_Title :
Communications, IEEE Transactions on
Publisher :
ieee
ISSN :
0090-6778
Type :
jour
DOI :
10.1109/TCOMM.2011.020811.090405
Filename :
5719283
Link To Document :
بازگشت