DocumentCode :
1457537
Title :
C- and D-weighted ultrasonic imaging using the translating apertures algorithm
Author :
Walker, William F.
Author_Institution :
Dept. of Biomed. Eng., Virginia Univ., Charlottesville, VA, USA
Volume :
48
Issue :
2
fYear :
2001
fDate :
3/1/2001 12:00:00 AM
Firstpage :
452
Lastpage :
461
Abstract :
Conventional ultrasonic imaging systems depict tissue backscatter, that is, the ultrasonic energy reflected directly back toward the transmitter. Although diagnostically useful, these systems fail to exploit the information available in components of the sound field scattered in other directions. This paper describes a new method of imaging this angular scatter. First, the translating apertures algorithm (TAA) is used to acquire data at two scattering angles. Then, these data are processed to yield an image of the common scattering with angle and the differential scattering with angle. This paper explores the potential of these common-weighted (c-weighted) and difference-weighted (d-weighted) images using theory and simulations. In addition, it describes and analyzes the performance of the TAA when it is applied using multiple receive elements. Analysis is presented that shows that, in Rayleigh scattering environments, c- and d-weighted images depict compressibility and density variations, respectively. A simulated image and accompanying analysis are presented that show the potential of these techniques to improve soft tissue contrast and to increase the detectability of microcalcifications. A comparison with previous angular scatter measurement techniques shows that use of the TAA significantly reduces statistical variability in measured angular scatter profiles. Spatially localized, statistically reliable angular scatter measurements will enable a broad range of angular scatter imaging techniques. C- and d-weighted imaging may ultimately he applied clinically to identify calcification in atherosclerotic plaques and breast tumors.
Keywords :
biomedical ultrasonics; medical image processing; ultrasonic imaging; ultrasonic scattering; C-weighted ultrasonic imaging; D-weighted ultrasonic imaging; Rayleigh scattering environments; angular scatter; atherosclerotic plaques; breast tumors; common-weighted images; compressibility; density; detectability; difference-weighted images; differential scattering; microcalcifications; multiple receive elements; soft tissue contrast; sound field; tissue backscatter; translating apertures algorithm; ultrasonic energy; Acoustic scattering; Analytical models; Apertures; Backscatter; Image analysis; Image coding; Performance analysis; Rayleigh scattering; Transmitters; Ultrasonic imaging; Algorithms; Biomedical Engineering; Breast Neoplasms; Calcinosis; Female; Humans; Image Processing, Computer-Assisted; Scattering, Radiation; Ultrasonography; Ultrasonography, Mammary;
fLanguage :
English
Journal_Title :
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-3010
Type :
jour
DOI :
10.1109/58.911728
Filename :
911728
Link To Document :
بازگشت