DocumentCode :
1460198
Title :
Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation
Author :
Francos, Joseph M. ; Friedlander, Benjamin
Author_Institution :
Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva, Israel
Volume :
47
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
273
Lastpage :
279
Abstract :
A parametric model and a corresponding algorithm for estimating two-dimensional (2-D) phase functions were presented in a previous paper. The performance of the phase estimation algorithm and, hence, the performance of any algorithm that employs it, strongly depends on the choice of the two free parameters of the algorithm. In this correspondence, we systematically analyze the performance of the phase estimation algorithm and derive rules for selecting the algorithm parameters such that the mean squared error in estimating the signal phase is minimized. It is shown analytically and verified using Monte-Carlo simulations that this choice of parameters results in unbiased estimates of the phase and spatial frequency functions. The variances of both the estimated phase and frequency functions are very close to the corresponding Cramer-Rao lower bounds
Keywords :
Monte Carlo methods; mean square error methods; multidimensional signal processing; phase estimation; 2D phase estimation; Cramer-Rao lower bounds; Monte-Carlo simulations; mean squared error; optimal parameter selection; phase differencing algorithm; spatial frequency functions; two-dimensional phase functions estimation; unbiased estimates; Array signal processing; Filters; Frequency estimation; Lattices; Multidimensional signal processing; Phase estimation; Signal processing; Signal processing algorithms; Speech processing; Two dimensional displays;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/78.738270
Filename :
738270
Link To Document :
بازگشت