Title :
Generalized Locally Weighted GMDH for Short Term Load Forecasting
Author :
Elattar, Ehab E. ; Goulermas, John Yannis ; Wu, Q.H.
Author_Institution :
Dept. of Electr. Eng., Minoufiya Univ., Shebin El-Kom, Egypt
fDate :
5/1/2012 12:00:00 AM
Abstract :
This paper proposes a generalized locally weighted group method of data handling (G-LWGMDH) based on evolutionary algorithm (EA) for short-term load forecasting. The locally weighted group method of data handling (LWGMDH) can be derived by combining GMDH with the local regression method and weighted least squares (WLS) regression. The connectivity configuration in the G-LWGMDH is not limited to adjacent layers, unlike the conventional GMDH. Moreover, each node in the G-LWGMDH network has a different number of inputs and a different polynomial order. The performance of the G-LWGMDH depends on choosing these factors before the network is constructed. Therefore, EA is used in this paper to optimally select these factors. In the proposed method, a new encoding scheme is presented, where each chromosome represents the structure of the whole network. The weighting functions bandwidth, the polynomial order for each node, the number of inputs for each node, and the input variables chosen to each node are encoded as a chromosome. The performance of the proposed method (EA-based G-LWGMDH) is evaluated using two real-world datasets. The results show that the proposed method provides a much better prediction performance in comparison with other methods employing the same data.
Keywords :
data handling; evolutionary computation; least squares approximations; load forecasting; polynomial approximation; regression analysis; G-LWGMDH network; connectivity configuration; encoding scheme; evolutionary algorithm; generalized locally weighted GMDH; generalized locally weighted group method of data handling; local regression method; polynomial order; prediction performance; real-world datasets; short term load forecasting; weighted least square regression; weighting function bandwidth; Biological cells; Data handling; Input variables; Kernel; Load forecasting; Polynomials; Time series analysis; Evolutionary algorithm; group method of data handling; kernel principal component analysis; locally weighted group method of data handling; short-term load forecasting (STLF); state space reconstruction;
Journal_Title :
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on
DOI :
10.1109/TSMCC.2011.2109378