Title :
Impact of LED Nonlinearity on Discrete Multitone Modulation
Author :
Inan, Beril ; Lee, S. C Jeffrey ; Randel, Sebastian ; Neokosmidis, Ioannis ; Koonen, Antonius M J ; Walewski, Joachim W.
Author_Institution :
COBRA Res. Inst., Tech. Univ. of Eindhoven, Eindhoven, Netherlands
Abstract :
In the context of communications based on light-emitting diodes (LEDs), spectrally efficient modulation has been considered for overcoming their limited bandwidth, and one scheme under investigation is quadrature-amplitude modulation on discrete multitones. The dependence of the output optical power on the driving current of practical LEDs is nonlinear, which distorts the transmitted signal. We investigate the impact of the nonlinear LED transfer function, i.e., the dependence of the emitted optical power on the driving current, on discrete multitone modulation. The effect incurred by this distortion was analyzed by using detailed numerical simulations addressing the impact of clipping, individual subcarriers, signal-to-noise ratio, and bit-error ratio. The approach was generalized to describe the impact of the nonlinearity of arbitrary LEDs and laser diodes, resulting in a powerful tool for assessing the impact of the nonlinearity on the link performance. This approach was applied to three types of LED, showing anything from a minuscule effect to the case in which error-free data transmission is made impossible by the transfer-function nonlinearity.
Keywords :
OFDM modulation; light emitting diodes; numerical analysis; optical communication; quadrature amplitude modulation; bandwidth; bit-error ratio; discrete multitone modulation; error-free data transmission; laser diodes; light-emitting diodes; nonlinear LED transfer function; numerical simulations; orthogonal frequency-domain multiplexing; quadrature-amplitude modulation; signal-to-noise ratio; spectral efficient modulation; Discrete multitone modulation; Light-emitting diode; Nonlinear distortion; Optical communication; Optical wireless communications; Orthogonal frequency-domain multiplexing;
Journal_Title :
Optical Communications and Networking, IEEE/OSA Journal of
DOI :
10.1364/JOCN.1.000439