DocumentCode :
146482
Title :
A coherent dynamic remote integrity check on cloud data utilizing homomorphic cryptosystem
Author :
Wadhwa, Divya ; Dabas, Poonam
Author_Institution :
Dept. of Comput. Sci. & Eng., Kurukshetra Univ., Kurukshetra, India
fYear :
2014
fDate :
25-26 Sept. 2014
Firstpage :
91
Lastpage :
96
Abstract :
Checking remote data integrity in climacteric cloud computing infrastructure is a valuable matter of concern. As the idea of cloud computing entered into a wide implementation today, data access becomes a major security issue. One of the various privacy concerns that are possibly taken into consideration relates to the maintenance of cloud data integrity. Directing users to check data integrity under public audibility is a task to be greatly considered. It is made through third party verifier who provides the client a proof whether the data placed on the server is altered or not. We proposed a dynamic data integrity checking mechanism in which the proof of correct data possession can be made from server on demand. Verifier, on behalf of the client can make a call to the server for verifying the correctness of the stored data, at anytime. This protocol is designed keeping the dynamic nature of cloud as the data placed on the server goes on changing very frequently. Thus, a dynamic data integrity approach is adopted here which includes the RSA encryption system as a method for public cryptosystem. A multiplicative homomorphic property, an idea towards integrity checking of cloud data, is implemented here. The beauty of applying and including the homomorphism property in our protocol is that, the proof can be generated by the third party verifier without having any clue of the original data. Our research is dually aimed at A) generating proof of correct data possession in a dynamic cloud environment B) providing high security of cloud data through homomorphic cryptosystem. The proposed technique is implemented in a very productive and cost effective manner. The testing results of the proposed work are propitious and favorable.
Keywords :
cloud computing; cryptographic protocols; data integrity; public key cryptography; RSA encryption system; climacteric cloud computing infrastructure; cloud data; coherent dynamic remote integrity check; correct data possession proof; dynamic data integrity checking mechanism; homomorphic cryptosystem; multiplicative homomorphic property; proof generation; public cryptosystem; server on demand; stored data correctness verification; third party verifier; Ciphers; Cloud computing; Educational institutions; Protocols; Servers; RSA cryptosystem; cloud computing; data possesion; dynamic cloud data; homomorphism; integrity checking; verifier;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Confluence The Next Generation Information Technology Summit (Confluence), 2014 5th International Conference -
Conference_Location :
Noida
Print_ISBN :
978-1-4799-4237-4
Type :
conf
DOI :
10.1109/CONFLUENCE.2014.6949264
Filename :
6949264
Link To Document :
بازگشت