DocumentCode :
1464989
Title :
Decoding the (47,24,11) quadratic residue code
Author :
He, Ruhua ; Reed, Irving S. ; Truong, Trieu-Kien ; Chen, Xuemin
Author_Institution :
Hughes Network Syst., San Diego, CA, USA
Volume :
47
Issue :
3
fYear :
2001
fDate :
3/1/2001 12:00:00 AM
Firstpage :
1181
Lastpage :
1186
Abstract :
The techniques needed to decode the (47,24,11) quadratic residue (QR) code differ from the schemes developed for cyclic codes. By finding certain nonlinear relations between the known and unknown syndromes for this special code, two methods are developed to decode up to the true minimum distance of the (47,24,11) QR code. These algorithms can be utilized to decode effectively the ½-rate (48,24,12) QR code for correcting five errors and detecting six errors
Keywords :
decoding; error correction codes; error detection codes; residue codes; (47,24,11) QR code; algebraic decoding; decoding; error correction; error detection; known syndromes; nonlinear relations; quadratic residue code; true minimum distance; unknown syndromes; Decoding;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.915677
Filename :
915677
Link To Document :
بازگشت