DocumentCode :
1465862
Title :
Persymmetric Parametric Adaptive Matched Filter for Multichannel Adaptive Signal Detection
Author :
Wang, Pu ; Sahinoglu, Zafer ; Pun, Man-On ; Li, Hongbin
Author_Institution :
Dept. of Electr. & Comput. Eng., Stevens Inst. of Technol., Hoboken, NJ, USA
Volume :
60
Issue :
6
fYear :
2012
fDate :
6/1/2012 12:00:00 AM
Firstpage :
3322
Lastpage :
3328
Abstract :
This correspondence considers a parametric approach for multichannel adaptive signal detection in Gaussian disturbance which can be modeled as a multichannel autoregressive (AR) process and, moreover, possesses a persymmetric structure induced by a symmetric antenna geometry. By introducing the persymmetric AR (PAR) modeling for the disturbance, a persymmetric parametric adaptive matched filter (Per-PAMF) is proposed. The developed Per-PAMF extends the classical PAMF by exploiting the underlying persymmetric properties and, hence, improves the detection performance in training-limited scenarios. The performance of the proposed Per-PAMF is examined by the Monte Carlo simulations and simulation results demonstrate the effectiveness of the Per-PAMF compared with the conventional PAMF and nonparametric detectors.
Keywords :
Monte Carlo methods; adaptive filters; autoregressive processes; matched filters; Gaussian disturbance; Monte Carlo simulations; PAR modeling; Per-PAMF; multichannel AR process; multichannel adaptive signal detection; multichannel autoregressive process; persymmetric AR modeling; persymmetric parametric adaptive matched filter; symmetric antenna geometry; Clutter; Covariance matrix; Detectors; Maximum likelihood estimation; Signal to noise ratio; Training; Vectors; Multichannel adaptive signal detection; maximum likelihood estimation; multichannel autoregressive process; parametric approach; persymmetry;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2012.2190411
Filename :
6166358
Link To Document :
بازگشت