Title :
Accelerating Pairwise Computations on Cell Processors
Author :
Sarje, Abhinav ; Zola, Jaroslaw ; Aluru, Srinivas
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA, USA
Abstract :
Direct computation of all pairwise distances or interactions is a fundamental problem that arises in many application areas including particle or atomistic simulations, fluid dynamics, computational electromagnetics, materials science, genomics and systems biology, and clustering and data mining. In this paper, we present methods for performing such pairwise computations efficiently in parallel on Cell processors. This problem is particularly challenging on the Cell processor due to the small sized Local Stores of the Synergistic Processing Elements, the main computational cores of the processor. We present techniques for different variants of this problem including those with large number of entities or when the dimensionality of the information per entity is large. We demonstrate our methods in the context of multiple applications drawn from fluid dynamics, materials science and systems biology, and present detailed experimental results. Our software library is an open source and can be readily used by application scientists to accelerate pairwise computations using Cell accelerators.
Keywords :
parallel processing; public domain software; software libraries; accelerating pairwise computation; cell accelerator; cell processor; computational core; fluid dynamics; information per entity; material science; open source; small sized local store; software library; synergistic processing element; system biology; Acceleration; Application software; Biological system modeling; Biology computing; Computational electromagnetics; Computational modeling; Fluid dynamics; Genomics; Materials science and technology; Systems biology; Parallel algorithms; cell broadband engine; computations on matrices; heterogeneous (hybrid) systems; multicore/single-chip multiprocessors.; pairwise computations;
Journal_Title :
Parallel and Distributed Systems, IEEE Transactions on
DOI :
10.1109/TPDS.2010.65