DocumentCode :
1467939
Title :
Efficient multispectral texture segmentation using multivariate statistics
Author :
Portillo-García, J. ; Trueba-Santander, I. ; de Miguel-Vela, G. ; Alberola-López, C.
Author_Institution :
Dept. of Senales, Sistemas y Radiocommun., Univ. Politecnica de Madrid, Spain
Volume :
145
Issue :
5
fYear :
1998
fDate :
10/1/1998 12:00:00 AM
Firstpage :
357
Lastpage :
364
Abstract :
A complete, low computational cost method is presented for multispectral textured image segmentation. The procedure performs a tesselation of the image into non-overlapped rectangular regions and decides about the homogeneity of each region, using statistical hypothesis testing. Regions labelled as homogeneous are used to estimate the parameters that are necessary to classify the pixels of the heterogeneous regions. The proposed scheme can also be used to estimate the number of different textures in the image. This represents an efficient alternative to other computationally expensive methods, such as those that employ clustering techniques
Keywords :
image classification; image segmentation; image texture; parameter estimation; spectral analysis; statistical analysis; clustering techniques; efficient multispectral texture segmentation; homogeneous regions; low computational cost method; multivariate statistics; nonoverlapped rectangular regions; parameter estimation; pixels classification; tesselation;
fLanguage :
English
Journal_Title :
Vision, Image and Signal Processing, IEE Proceedings -
Publisher :
iet
ISSN :
1350-245X
Type :
jour
DOI :
10.1049/ip-vis:19982315
Filename :
741949
Link To Document :
بازگشت