• DocumentCode
    1470580
  • Title

    Multiprocessor document allocation: a genetic algorithm approach

  • Author

    Frieder, Ophir ; Siegelmann, Hava T.

  • Author_Institution
    Fac. of Comput. Sci. & Comput. Eng., Florida Inst. of Technol., Melbourne, FL, USA
  • Volume
    9
  • Issue
    4
  • fYear
    1997
  • Firstpage
    640
  • Lastpage
    642
  • Abstract
    We formally define the Multiprocessor Document Allocation Problem (MDAP) and prove it to be computationally intractable (NP complete). Once it is shown that MDAP is NP complete, we describe a document allocation algorithm based on genetic algorithms. This algorithm assumes that the documents are clustered using any one of the many clustering techniques. We later show that our allocation algorithm probabilistically converges to a good solution. For a behavioral evaluation, we present sample experimental results
  • Keywords
    genetic algorithms; information retrieval; multiprocessing systems; parallel algorithms; resource allocation; Multiprocessor Document Allocation Problem; NP complete; behavioral evaluation; clustering techniques; computationally intractable; document allocation algorithm; document clustering; experimental results; genetic algorithm approach; probabilistic convergence; Clustering algorithms; Concurrent computing; Costs; Databases; Genetic algorithms; Information retrieval; Information systems; Memory architecture; Parallel processing; Phased arrays;
  • fLanguage
    English
  • Journal_Title
    Knowledge and Data Engineering, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1041-4347
  • Type

    jour

  • DOI
    10.1109/69.617055
  • Filename
    617055