Title :
Effect of Scaling
-Based RRAMs on Their Resistive Switching Characteristics
Author :
Kim, Seonghyun ; Biju, Kuyyadi P. ; Jo, Minseok ; Jung, Seungjae ; Park, Jubong ; Lee, Joonmyoung ; Lee, Wootae ; Shin, Jungho ; Park, Sangsu ; Hwang, Hyunsang
Author_Institution :
Sch. of Mater. Sci. & Eng., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea
fDate :
5/1/2011 12:00:00 AM
Abstract :
We investigated the effect of scaling down the device area of WOx resistive random-access memory (RRAM) devices on their switching characteristics. Device dimensions were successfully scaled down to 50 nm using a via-hole structure with additional Al2O3 sidewall process. As compared to the microscale devices, the nanoscale devices exhibited a distinct switching mechanism and better memory performance, such as improved switching uniformity, larger memory window, and stable endurance characteristics for up to 107 cycles. This improvement can be explained by a uniform interfacial switching mechanism in nanoscale device; this is in contrast with the defect-induced filamentary switching mechanism observed in microscale devices. In this way, the intrinsic switching properties of RRAMs were obtained by scaling down of the device area, indicating that RRAMs hold considerable promise for future applications.
Keywords :
random-access storage; tungsten compounds; RRAM devices; WOx; defect-induced filamentary switching mechanism; microscale devices; nanoscale devices; random-access memory devices; resistive switching characteristics; sidewall process; size 50 nm; uniform interfacial switching mechanism; via-hole structure; Ions; Materials; Nanoscale devices; Nonvolatile memory; Resistance; Switches; Switching circuits; Resistive random-access memory (RRAM); scaling effect; tungsten oxide;
Journal_Title :
Electron Device Letters, IEEE
DOI :
10.1109/LED.2011.2114320