DocumentCode :
1474104
Title :
Minimum Weights and Weight Enumerators of BBZ_{4} -Linear Quadratic Residue Codes
Author :
Kiermaier, Michael ; Wassermann, Alfred
Author_Institution :
Dept. of Math., Univ. of Bayreuth, Bayreuth, Germany
Volume :
58
Issue :
7
fYear :
2012
fDate :
7/1/2012 12:00:00 AM
Firstpage :
4870
Lastpage :
4883
Abstract :
A fast method to compute the minimum Lee weight and the symmetrized weight enumerator of extended quadratic residue codes (XQR-codes) over the ring Z4 is developed. Our approach is based on the classical Brouwer-Zimmermann algorithm and additionally takes advantage of the large group of automorphisms and the self-duality of the Z4-linear XQR-codes as well as the projection to the binary XQR-codes. As a result, the hitherto unknown minimum Lee distances of all Z4-linear XQR-codes of lengths between 72 and 104 and the minimum Euclidean distances for the lengths 72, 80, and 104 are computed. It turns out that the binary Gray image of the Z4-linear XQR-codes of lengths 80 and 104 has higher minimum distance than any known linear binary code of equal length and cardinality. Furthermore, the Z4-linear XQR-code of length 80 is a new example of an extremal Z4-linear typeII code. Additionally, we give the symmetrized weight enumerator of the Z4-linear XQR-codes of lengths 72 and 80, and we correct the weight enumerators of the Z4-linear XQR-code of length 48 given by Pless and Qian and Bonnecaze et al.
Keywords :
Gray codes; binary codes; linear codes; residue codes; automorphism group; binary Gray imaging; classical Brouwer-Zimmermann algorithm; extremal Z4-linear type II code; linear binary XQR-code; minimum Euclidean distance; minimum Lee distance; minimum Lee weight computation; ring Z4-linear XQR-code; ring Z4-linear extended quadratic residue code; symmetrized weight enumerator; Binary codes; Indexes; Linear code; Polynomials; Sections; Vectors; Zinc; $BBZ_{4}$-linear code; Error-correcting code; Euclidean weight; Lee weight; extremal code; quadratic residue code; self-dual code; symmetrized weight enumerator (swe);
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2012.2191389
Filename :
6172231
Link To Document :
بازگشت