DocumentCode :
1474601
Title :
Cost-Sensitive Multi-Label Learning for Audio Tag Annotation and Retrieval
Author :
Lo, Hung-Yi ; Wang, Ju-Chiang ; Wang, Hsin-Min ; Lin, Shou-De
Volume :
13
Issue :
3
fYear :
2011
fDate :
6/1/2011 12:00:00 AM
Firstpage :
518
Lastpage :
529
Abstract :
Audio tags correspond to keywords that people use to describe different aspects of a music clip. With the explosive growth of digital music available on the Web, automatic audio tagging, which can be used to annotate unknown music or retrieve desirable music, is becoming increasingly important. This can be achieved by training a binary classifier for each tag based on the labeled music data. Our method that won the MIREX 2009 audio tagging competition is one of this kind of methods. However, since social tags are usually assigned by people with different levels of musical knowledge, they inevitably contain noisy information. By treating the tag counts as costs, we can model the audio tagging problem as a cost-sensitive classification problem. In addition, tag correlation information is useful for automatic audio tagging since some tags often co-occur. By considering the co-occurrences of tags, we can model the audio tagging problem as a multi-label classification problem. To exploit the tag count and correlation information jointly, we formulate the audio tagging task as a novel cost-sensitive multi-label (CSML) learning problem and propose two solutions to solve it. The experimental results demonstrate that the new approach outperforms our MIREX 2009 winning method.
Keywords :
audio signal processing; information retrieval; learning (artificial intelligence); music; pattern classification; MIREX 2009 audio tagging; audio retrieval; audio tag annotation; automatic audio tagging; binary classifier; cost sensitive multi label learning; digital music; music clip; tag correlation information; Correlation; Electronic mail; Feature extraction; Measurement; Support vector machines; Tagging; Training; Audio tag annotation; audio tag retrieval; cost-sensitive learning; multi-label; tag count;
fLanguage :
English
Journal_Title :
Multimedia, IEEE Transactions on
Publisher :
ieee
ISSN :
1520-9210
Type :
jour
DOI :
10.1109/TMM.2011.2129498
Filename :
5733421
Link To Document :
بازگشت