DocumentCode :
1474662
Title :
Decision feedback multiuser detection: a systematic approach
Author :
Varanasi, Mahesh K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA
Volume :
45
Issue :
1
fYear :
1999
fDate :
1/1/1999 12:00:00 AM
Firstpage :
219
Lastpage :
240
Abstract :
A systematic approach to decision feedback multiuser detection is introduced for the joint detection of symbols of K simultaneously transmitting users of a synchronous correlated waveform multiple-access (CWMA) channel with Gaussian noise. A new performance criterion called symmetric energy is defined which is a low-noise indicator of the joint error rate that at least one user is detected erroneously. Even the best linear detectors can perform poorly in terms of symmetric energy compared to the maximum-likelihood detector. A general class of decision feedback detectors (DFDs) is defined with O(K) implementational complexity per user. The symmetric energy of arbitrary DFD and bounds on their asymptotic effective energy (AEE) performance are obtained along with an exact bit-error rate and AEE analysis for the decorrelating DFD. The optimum DFD that maximizes symmetric energy is obtained. Each one of the K! optimum, decorrelating, and conventional DFDs, that correspond to the K! orders in which the users can be detected, are shown to outperform the linear optimum, decorrelating, and conventional detectors, respectively, in terms of symmetric energy. Moreover, algorithms are obtained for determining the choice of order of detection for the three DFDs which guarantee that they uniformly (user-wise) outperform their linear counterparts. In addition to optimality in symmetric energy, it is also shown that under certain conditions, the optimum DFD achieves the AEE performance of the exponentially complex maximum-likelihood detector for all users simultaneously. None of the results of this paper make the perfect feedback assumption. The implications of our work on power control for multiuser detection are also discussed
Keywords :
Gaussian noise; computational complexity; error statistics; multi-access systems; multiuser channels; receivers; signal detection; synchronisation; AEE; CWMA channel; Gaussian noise; asymptotic effective energy; bit-error rate; decision feedback multiuser detection; implementational complexity; joint detection; joint error rate; low-noise indicator; performance criterion; simultaneously transmitting users; symmetric energy; synchronous correlated waveform multiple-access; systematic approach; Bit error rate; Decorrelation; Design for disassembly; Detectors; Error analysis; Feedback; Gaussian noise; Maximum likelihood detection; Multiuser detection; Performance analysis;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/18.746793
Filename :
746793
Link To Document :
بازگشت